

TWO STAGE DUAL FUEL BURNERS

CE

• GI/EMINE 300 10//1/5÷ 332 kVV
• GI/EMME 400 116/232÷ 465 kW
• GI/EMME 600 174/348÷ 665 kW
• GI/EMME 900 250/525÷ 922 kW

The GI/EMME 300-900 series of burners covers a firing range from 107 to 922 kW. They have been designed for middle and high output users and they are in particular suitable for matching with pressurized boilers.

Their use allow to have an high safety in operation, guaranteed from the double fuel supply. Two options of operation are available: only gas and only light oil, thus settable by a selector and a terminal board. Light oil circuit is fitted with his own electric motor: this permits pump stop during gas operation preventing danger of pumping seizure. A wide range of accessories and gas trains suitable to the burners guarantee an elevated working flexibility.

Ξ

TECHNICAL DATA

	Model			▼ GI/EMME 300	▼ GI/EMME 400	▼ GI/EMME 600	▼ GI/EMME 900	
	Burner operat	ion mode		Two stage				
	Modulating ra	tio at max. ouput		2:1				
	Servomotor	type			LKS	210		
		run time	S	407/475 000	44.0 (000 405		050/505 000	
	Heat output		kW	10//1/5 - 332	116/232 - 465	1/4/348 - 665	250/525 - 922	
	10/		ivical/n	92/150 - 286	100/200 - 400	150/299 - 572	215/452 - 793	
	working temp	Not colorific volue	² C min/max	11.8				
	Oil	Viscosity	mm^2/s (cSt)	4-6 at 20°C				
	011	Delivery	ka/h	9/15 - 28	10/20 - 39	15/29 - 56	21/44 - 78	
		type	Ng/ II	AN 67	AN 67	AN 77	AN 97	
	Pump	delivery	ka/h	75 at 12 bar	75 at 12 bar	100 at 12 bar	120 at 12 bar	
	Atomised pres	ssure	bar		1	2		
	Fuel temperat	ure	max °C		6	0		
a	Fuel preheater				N	0		
dat		Net calorific value	kWh/Nm ³		1	0		
aır	G20	Density	kg/Nm ³	0,71				
		Gas delivery	Nm³/h	10,7/17,5 - 33,2	11,6/23,2 - 46,5	17,4/34,8 - 66,5	25/52,5 - 92,2	
2		Net calorific value	kWh/Nm ³	8,6				
	G25	Density	kg/Nm ³		0,3	78		
		Gas delivery	Nm³/h	12,4/20,3 - 38,6	13,5/27 - 54	20,2/40,4 - 77,3	29/61 - 107,2	
		Net calorific value	kWh/Nm ³	25,8				
	LPG	Density	kg/Nm ³	2,02				
		Gas delivery	Nm ³ /h	4,1/6,8 - 12,9	4,5/9 - 18	6,7/13,5 - 25,8	9,7/20,3 - 35,7	
	Fan type		type		Centrifugal with for	rward curve blades		
	Air temperatu	re	max °C	60				
	Electrical supply		Ph/Hz/V	1/50/230 (± 10%) 3N/50/230-400 (±10%)				
	Auxiliary electrical supply		Ph/Hz/V	1/50/230 (±10%)				
	Control box		type	0.5	LFL 1	1.333	2	
			KVV	0,5	0,62	1,1	0.25	
	Heaters electrical power		kw	0,1		0,2	0,55	
	Protection level		IP					
a	Protection level		 kW	0.15				
dat	Rated pump n	notor current	A	1,4 2,85				
cal	Pump motor s	start up current	А	3,2 6,5				
CT	Pump motor p	protection level	IP		4	4		
	Fan motor ele	ctrical power	kW	0,25	0,37	0,75	1,5	
	Rated fan mot	tor current	А	1,85	2,9	2,85/1,65	6,55/3,15	
	Fan motor sta	rt up current	А	4,2	6,6	6,5/3,8	32,75/15,75	
	Fan motor pro	tection level	IP		4	4		
			type		-	-		
	Ignition trans	former	V1-V2		230 V -	1x8 kV		
			1 - 2		1,8 A -	30 mA		
	Operation				Intermittent (at least	one stop every 24h)		
	Sound pressu	re	dB(A)	69	74	82	84	
	Sound power	00	W		-	-		
ons		Co emission			<.	50		
SS	Oil	Grade of smoke indicator			-	•		
E		NOv emission	mg/kWh			00		
		CO emission	mg/kWh		<	60		
	G20	NOx emission	mg/kWh		<1	20		
a	Directive				89/336 - 7	3/23 EEC		
oro	Conforming to)			EN 267 -	EN 676		
Ap	Certification							

T

₿

 $\begin{array}{l} \textbf{Reference conditions:}\\ Temperature: 20^{\circ}C \ - \ Pressure: 1013,5 \ mbar \ - \ Altitude: 100 \ m \ a.s.l.\\ Noise measured at a distance of 1 \ meter. \end{array}$

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information

shall not be divulged, nor duplicated in whole or in part.

Test conditions conforming to EN 267 - EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

FUEL SUPPLY

GASTRAIN

The gas trains are fitted with a regulating valve to adjusts fuel delivery in relation to heat required. This valve is controlled by the two-stages device fitted on the burner.

Fuel can be supplied either from the right or left sides, on the basis of the application requirments.

The gas train can be selected to best fit system requirments depending on the fuel output and pressure in the supply line. The gas trains can be "Multibloc" type (containing the main components in a single unit) or "Composed" type (assembly of the single components).

 \mathbf{T}

B

Example of gas inlet pipe burners for GI/EMME

MULTIBLOC gas train with seal control

COMPOSED gas train without seal control

1	Gas input pipework
2	Manual valve
3	Anti-vibration joint
4	Pressure gauge with pushbutton cock
5	Filter
6	Pressure regulator (vertical)
7	Minimum gas pressure switch
8	VS safety solenoid (vertical)
9	VR regulation solenoid (vertical). Three adjustments: - ignition delivery (rapid opening) - 1 st stage delivery (slow opening) - 2 nd stage delivery ((slow opening)
10	Gasket and flange supplied with the burner
11	Burner
12	Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW
13	Gas train-burner adapter.
P1	Combustion head pressure
P2	Pressure downstream from the regulator
P3	Pressure upstream from the filter
L	Gas train supplied separately, with the code given in the table
L1	Installer's responsibility

COMPOSED gas train with seal control

Gas trains are approved by standard EN 676 together with the burner.

▼

The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to RLS burners, intake and outlet diameters and seal control if fitted.

Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

The maximum gas pressure of gas train "Multibloc" type is 300 mbar, and that one of gas train "Composed" type is 500 mbar.

	Name	Code	Øi	Øo	X mm	Y mm	Zmm	Seal Control
	MBZRDLE 407	3970556	3/4"	3/4"	195	235	120	-
2 S S S S S S S S S S S S S S S S S S S	MBZRDLE 410	3970557	1″	3/4"	195	235	145	-
BL	MBZRDLE 412	3970152	1″1/4	1″1/2	433	290	145	-
AST	MBZRDLE 415	3970183	1″1/2	121/2	523	346	100	-
M M	MBZRDLE 420	3970184	2″	2″	523	400	100	-
	MBZRDLE 420 CT	3970185	2″	2″	523	400	227	Incorporated
E E E E	CB 40/2	3970153	1″1/2	1″1/2	1013	346	195	-
RAIL	CB 50/2	3970154	2″	2″	1150	354	250	-
AST	CBF 65/2	3970155	DN 65	DN 65	1166	475	285	-
Sq.	CBF 65/2 CT	3970167	DN 65	DN 65	1166	475	285	Incorporated

PRESSURE DROP DIAGRAM

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.

The value thus calculated represents the minimum required input pressure to the gas train.

Gas train	Code	Adapter	Seal Control
MBZRDLE 407	3970556	3000824	Accessory
MBZRDLE 410	3970557	3000824	Accessory
MBZRDLE 412	3970152	3010124	Accessory

Gas train	Code	Adapter	Seal Control
MBZRDLE 410	3970557	3000824	Accessory
MBZRDLE 412	3970152	3010124	Accessory
MBZRDLE 415	3970183	-	Accessory
CB 40/2	3970153	-	Accessory

-

Gas train	Code	Adapter	Seal Control
MBZRDLE 415	3970183	-	Accessory
CB 40/2	3970153	-	Accessory

Gas train	Code	Adapter	Seal Control
CB 50/2	3970154	3000822	Accessory
MBZRDLE 420	3970184	3000822	Accessory
MBZRDLE 420 CT	3970185	3000822	Incorporated

NATURAL GAS

Gas train	Code	Adapter	Seal Control
MBZRDLE 410	3970557	3000824	Accessory
MBZRDLE 412	3970152	3010124	Accessory
MBZRDLE 415	3970183	-	Accessory
CB 40/2	3970153	-	Accessory

LPG

Gas train	Code	Adapter	Seal Control
CB 50/2	3970154	3000822	Accessory
MBZRDLE 420	3970184	3000822	Accessory
MBZRDLE 420 CT	3970185	3000822	Incorporated

Gas train	Code	Adapter	Seal Control
MBZRDLE 420 CT	3970185	-	Incorporated
CB 50/2	3970154	-	Accessory
CBF 65/2	3970155	3000825	Accessory
CBF 65/2 CT	3970167	3000825	Incorporated

▶ note

e Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

SELECTING THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale (\mathbf{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	- gas used	G25
-	- gas output	9.51 mc/h
	- pressure at the gas meter	20 mbar
	- gas line length	15 m
	 conversion coefficient 	0.62 (see figure A)
- equivalen	t methane output $\mathbf{\dot{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix}$	= 15.34 mc/h

- once the value of 15.34 has been identified on the output scale ($\check{\mathbf{v}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;

- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;

- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;

8

-

HYDRAULIC CIRCUIT

The burners are fitted with three valves (a safety valve and two oil delivery valves) along the oil line from the pump to the nozzle. A thermostatic control device, on the basis of required output, regulates oil delivery valves opening, allowing light oil passage trough the valves and to the nozzle.

Delivery valves open contemporary to the air damper opening, controlled by a servomotor.

The pumping group is fitted whit a pump, an oil filter and a regulating valve: through this it is possible to manaully adjusts atomised pressure, which in factory is preset at 12 bar.

Example of light oil pump of GI/EMME burners

Ρ	Pump with filter and pressure regulator on the output circuit
VS	Safety valve on the output circuit
V1	1st stage valve
V2	2nd stage valve
PV	Nozzle holder
U1	1st stage nozzle
U2	2nd stage nozzle

▼

GI/EMME 300 - 400 - 600 - 900

SELECTING THE FUEL SUPPLY LINES

The fuel feed must be completed with the safety devices required by the local norms.

The table shows the choice of piping diameter for the various burners, depending on the difference in height between the burner and the tank and their distance.

	MAXIMUM EQUIVALENT LENGTH FOR THE PIPING L[m]									
Model		▼ GI/EN	▼ GI/EMME 400		▼ GI/EMME 600		▼ GI/EMME 900			
Piping diameter	8 mm	10 mm	8 mm	10 mm	10 mm	12 mm	12 mm	14 mm		
+H, -H (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)		
+4	33	83	20	51	51	112	71	138		
+3	22	55	18	46	46	99	62	122		
+4	19	48	16	39	39	86	58	106		
+1,5	18	44	14	35	35	79	51	98		
+1	16	40	13	32	32	73	44	90		
+0,5	15	37	12	29	29	65	40	82		
0	13	33	10	26	26	60	36	74		
-0,5	12	29	9	23	23	54	32	66		
-1	10	25	8	20	20	47	28	56		
-1,5	8	21	6	16	16	40	23	49		
-2	7	17	5	13	13	34	19	42		
-3	4	10	3	7	7	21	190	26		
-4	2	4	1	2	2	8	3	10		

н	Difference in height pump-foot valve
Ø	Internal pipe diameter
Р	Height ≤ 10 m
V	Height ≤ 4 m
1	Burner
2	Burner pump
3	Filter
4	Manual shut off valve
5	Suction pipework
6	Bottom valve
7	Remote controlled rapid manual shutoff valve (compulsory in Italy)
8	Type approved shut off solenoid (compulsory in Italy)
9	Return pipework
10	Check valve

▼

• note With ring distribution oil systems, the feasible drawings and dimensioning are the responsibility of specialised engineering studios, who must check compatibility with the requirements and features of each single installation.

Example of air damper of GI/EMME burners

The ventilation circuit comes with a forward blades centrifugal fan, which guarantees high pressure levels at the required air deliveries and permits installation flexibility.

In spite of the remarkable output power and of the very high pressure performance, GI/EMME models are extremely compact.

A minimum air pressure switch stops the burner when there is an insufficient quantity of air at the combustion head.

A servomotor allows to have a right air flow in any operational state and the closure of air damper when burner is in stand-by.

ADJUSTMENT

BURNER OPERATION MODE

With two stage operation, the GI/EMME series of burners can follow the temperature load requested by the system. A modulation ratio of 2:1 is reached thanks to the nozzles when burner is supplied with light oil and to the two-stage gas train when burner is supplied from gas; the air is adapted to the servomotor rotations.

On "two stage" operation, the burner gradually adjusts output to the requested level, by varying between two pre-set levels (see picture A).

Two stage operation

 \mathbf{T}

B

START UP CYCLE

- 0" Thermostat closes. The motor starts running.
- 36" Pre-ignition (*)
- 40" 1st stage valve opens; 1st stage flame (**).
- 50" If heat request is not yet satisfied, 2nd stage solenoid valve opens. The start up cycle comes to an end. 2nd stage flame (***).

(*) 49" for GI/EMME 300. (**) 55" for GI/EMME 300. (***) 67" for GI/EMME 300.

WIRING DIAGRAMS

Electrical connections must be made by gualified and skilled personnel, according to the local norms.

TWO STAGE OPERATION

T

₿

GI/EMME 300-400 Without seal control

- PG
- Min. gas pressure switch
 Remote lock-out signal S TL
- Load limit remote control system
 High-Low mode remote control system
- TR
- TS V1 V2
- Safety load control system
 Regulating valve 1st stage
 Regulating valve 2nd stage
 Safety valve
- vs

GI/EMME 600-900 Without seal control

- Load limit remote control system
 High-Low mode remote control system
- Safety load control system
 Regulating valve 1st stage
 Regulating valve 2nd stage
 Safety valve

- vs

GI/EMME 300-400 With seal control

- MB Burner terminal board
- IN PG - Burner manual stop switch
- S S1 TL TR - Remote lock-out signal
 - Remote lock-out signal of seal control device
 - Load limit remote control system
- High-Low mode remote control system High-Low mode remote cor
 Safety load control system
 VPS - Seal control device
 V1 - Regulating valve 1st stage
 V2 - Regulating valve 2nd stage
 VS - Safety valve
 VP - Plug for seal control device

GI/EMME 600-900 With seal control

The following table shows the supply lead sections and the type of fuse to be used.

Model		▼GI/EMME 300	▼ GI/EMME 400	▼ GI/EMME 600		▼ GI/EMME 900	
		230V	230V	230V	400V	230V	400V
F	А	T6	Т6	T6	T6	T16	T10
L	mm ²	1,5	1,5	1,5	1,5	1,5	1,5

EMISSIONS

 \mathbf{T}

₿

NO_x EMISSIONS

The emission data has been measured in the various models at maximum output, according to EN 676 and EN 267 standard.

14

Model	А	E	G	G(1)	D	Н	L	М	Ι	N	0	O(1)
► GI/EMME 300	410	610	185	320	397	140	165	1″1/2	292	97	978	978
► GI/EMME 400	410	610	187	320	397	150	165	1″1/2	292	97	1018	1018
► GI/EMME 600	410	645	187	320	437	155	165	1″1/2	332	97	1063	1063
GI/EMME 900	410	770	227	360	485	175	195	2″	370	131	1260	1260

(1) Dimension with "extended head".

BURNER - BOILER MOUNTING FLANGE

Model	L	Μ	Ν
► GI/EMME 300	160	155	M 10
GI/EMME 400	160	165	M 10
► GI/EMME 600	160	165	M 10
► GI/EMME 900	195	185	M 12

PACKAGING

Model	Х	Y	Z	kg
• GI/EMME 300	835	530	453	42
GI/EMME 400	835	530	453	49
• GI/EMME 600	880	530	500	64
► GI/EMME 900	103	530	435	88

INSTALLATION DESCRIPTION

•

B

Installation, start up and maintenance must be carried out by qualified and skilled personnel. All operations must be performed in accordance with the technical handbook supplied with the burner.

BURNER SETTING

- All the burners have slide bars, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as a template, dismantle the blast tube from the burner and fix it to the boiler.
- Adjust the combustion head.
- ▶ Fit the gas train choosing this on the basis of the maximum boiler output and following the diagrams included in the burner instruction handbook
- Refit the burner casing to the slide bars.
- Install the nozzle choosing this on the basis of the maximum boiler output and following the diagrams included in the burner instruction handbook.
- Check the position of the electrodes.
- Close the burner, sliding it up to the flange, keeping it slightly raised to avoid the flame stability disk rubbing against the blast tube.

ELECTRICAL AND HYDRAULIC CONNECTIONS AND START UP

- The burners are supplied for connection to two pipes fuel supply system.
- Connect the ends of the flexible pipes to the suction and return pipework using the supplied nipples.
- ▶ Make the electrical connections to the burner following the wiring diagrams included in the instruction handbook.
- > Prime the pump by turning the motor (after checking rotation direction if it is a three phase motor).
- Adjust the gas train for start-up On start-up, check: Pressure pump and valve unit regulator (to max. and min.) Gas pressure at the combustion head (to max. and min. output) Combustion guality, in terms of unburned substances and excess air.

BURNER ACCESSORIES

Nozzles

Y.

B

The nozzles must be ordered separately. The following table shows the features and codes on the basis of the maximum required fuel delivery.

Nozzles type 60° B						
Burner	GPH	Rated delivery (kg/h) at 12 bar	Nozzle code			
GI/EMME 300	1,75	6,8	3042110			
GI/EMME 300	2,00	7,8	3042126			
GI/EMME 300	2,25	8,7	3042127			
GI/EMME 300 - 400	2,50	9,7	3042140			
GI/EMME 300 - 400	3,00	11,6	3042158			
GI/EMME 300 - 400	3,50	13,6	3042162			
GI/EMME 300 - 400 - 600	4,00	15,6	3042172			
GI/EMME 400 - 600	4,50	17,5	3042182			
GI/EMME 400 - 600	5,00	19,4	3042192			
GI/EMME 400 - 600	5,50	21,3	3042202			
GI/EMME 600 - 900	6,00	23,3	3042212			
GI/EMME 600 - 900	7,00	27,1	3042232			
GI/EMME 600 - 900	7,50	29,1	3042242			
GI/EMME 900	8,50	33	3042262			
GI/EMME 900	9,50	36,8	3042282			
GI/EMME 900	10	38,8	3042292			
GI/EMME 900	11	42,3	3042312			
GI/EMME 900	12,00	46,5	3042322			

Extended head kit

"Standard head" burners can be transformed into "extended head" versions, by using the special kit. The kits available for the various burners, giving the original and the extended lengths, are listed below.

7	₽ ¹	

Extended head kit						
Burner	Standard head length (mm)	Extended head length (mm)	Kit code			
GI/EMME 300	185	320	3000836			
GI/EMME 400	187	320	3010001			
GI/EMME 600	187	320	3010002			
GI/EMME 900	227	360	3010003			

Sound proofing box

If noise emission needs reducing, sound-proofing boxes are available, as given in the following table:

Sound proofing box					
Burner	Box type	Average noise reduction [dB(A)](*)	Box code		
GI/EMME 600 - 900	C1/3	10	3010403		

(*) according to EN 15036-1 standard

GAS TRAIN ACCESSORIES

Adapters

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner.

	Adapters						
Burner	Gas train	Dimensions	Adapter code				
GI/EMME 300	MBZRDLE 407-410	3/4" 1" 1/2	3000824				
	MBZRDLE 412	1"1/4	3010124				
	MBZRDLE 410	3/4" 1" 1/2	3000824				
GI/EMME 400	MBZRDLE 412	1"1/4	3010124				
	MBZRDLE 420 - CB 50/1	2" 1" 1/2	3000822				
	MBZRDLE 410	3/4" 1" 1/2	3000824				
GI/EMME 600	MBZRDLE 412	1"1/4	3010124				
	MBZRDLE 420 - CB 50/1	2" 1" 1/2	3000822				
	MBZRDLE 412	1"1/4 2 "	3010126				
GI/EMME 900	MBZRDLE 415 - CB 40/1	1" 1/2 2"	3000843				
	CBF 65	DN 65 2"1/2 2" 2"	3000825				

-

₿

Seal control kit

To test the valve seals on the gas train, a special "seal control kit" is available.

Seal control kit						
Burner	Gas train	Kit code				
	MBZRDLE 407 - MBZRDLE 410 -	3010123				
GI/EMME 300	MBZRDLE 412					
	MBZRDLE 415 - CB 40/2 -	3010125				
	MBZRDLE 410 - MBZRDLE 412					
GI/EMME 400	MBZRDLE 415 - MBZRDLE 420	2010125				
	CB 40/2 - CB 50/2	3010125				
	MBZRDLE 410 - MBZRDLE 412	3010123				
GI/EMME 600	MBZRDLE 415 - MBZRDLE 420	2010125				
	CB 40/2 - CB 50/2	3010125				
	MBZRDLE 412	3010123				
GI/EMME 900	MBZRDLE 415 - MBZRDLE 420	2010125				
	CB 40/2 - CB 50/2 - CBF 65/2	3010123				

Stabiliser spring

Accessory springs are available to vary the pressure range of the gas train stabilisers.

2		Stabiliser spring				
3	Gas train	Gas train Spring				
3	CBF 65/2	Red from 25 to 55 mbar	3010133			
	CBF 65/2	Black from 60 to 110 mbar	3010135			
0	CBF 65/2	Pink from 90 to 150 mbar	3090456			

-

SPECIFICATION

T

B

A specific index guides your choice of burner from the various models available in the GI/EMME series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

AVAILABLE	BUF	NER	MODELS						
GI/EMME 300	тс	FS1	1/220/60	220/60	GI/EMME 900	тс	FS1	3/210/60	120/60
GI/EMME 300	TC	FS1	1/230/50	230/50	GI/EMME 900	TC	FS1	3/220-380/60	220/60
					GI/EMME 900	тс	FS1	3/230-400/50	230/50
GI/EMME 400	ТС	FS1	1/210/60	120/60					
GI/EMME 400	ТС	FS1	1/230/50	230/50					
GI/EMME 400	ТС	FS1	3/220-380/60	220/60					
GI/EMME 600	ТС	FS1	3/210/60	120/60					
GI/EMME 600	ТС	FS1	3/220-380/60	220/60					
GI/EMME 600	тс	FS1	3/230-400/50	230/50	Other version	s are	availa	able on reques	st.

20

PRODUCT SPECIFICATION

Burner:

▼

Monoblock forced draught dual fuel burner, with two-stage operation, made up of: - Air suction circuit

- Fan with forward curved blades
- Air damper for setting controlled by a servomotor
- Combustion head, that can be set on the basis of required output
- Maximum gas pressure switch
- Minimum air pressure switch
- Fan electrical motor
- Pump electrical motor
- Gears pump for high pressure fuel supply, fitted with:
 - filter
 - pressure regulator
 - connections for installing a pressure gauge and a a vacuometer
 - internal by-pass for single pipe installation
- Valve unit with a double oil safety valve on the output circuit
- UV photocell for flame detection
- Flame inspection window
- Slide bars for easier installation and maintenance
- Protection filter against radio interference
- IP 40 protection level.

Gas train:

Fuel supply line, in the MULTIBLOC configuration (from a diameter of 3/4" until a diameter 2") or COMPOSED configuration (from a diameter of DN 65 until a diameter of DN 100), fitted with: - Filter

- Stabiliser
- Minimum gas pressure switch
- Safety valve
- Valve seal control (for output > 1200 kW)
- One stage working valve with ignition gas output regulator.

Conforming to:

- 89/336/EEC directive (electromagnetic compatibility)
- 73/23/EEC directive (low voltage)
- EN 267 (liquid fuel burners)
- EN 676 (gas fuel burners).

Standard equipment:

- 1 gas train gasket
- 1 flange gasket
- 1 insulating screen
- 2 flexible hoses for connection to the oil supply circuit
- 2 nipples for connection to the pump
- 3 wiring looms fittings for electrical connections
- 8 screws for fixing the burner flange to the boiler
- 1 LPG kit
- Instruction manual for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- Nozzles
- Head extension kit
- Sound proofing box
- Adapters
- Stabiliser spring
- Seal control kit.

•

Lineagrafica.it

RIELLO s.p.A. - Via Ing. Pilade Riello, 5 - 37045 Legnago (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980 Internet: http://www.rielloburners.com - E-mail: info@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

